This is a list of some of the books and articles I’ve read on the topic of causal inference. It also contains books I plan to read one day. I’ll update this list in the future, as I make my way through more causal inference resources.

**Books**:

*Causal Inference*by Miguel Hernán and Jamie Robins: The most practical book I’ve read. Highly recommended.*Why: A Guide to Finding and Using Causes*by Samantha Kleinberg: A high-level intro to the topic. I discussed highlights in*Why you should stop worrying about deep learning and deepen your understanding of causality instead*.*Causality, Probability, and Time*by Samantha Kleinberg: More technical than Kleinberg’s other book. As the title suggests, the element of time is central to the methods presented in the book. However, I’m still unsure about the practicality of those methods on real data. See my post*Diving deeper into causality: Pearl, Kleinberg, Hill, and untested assumptions*for more details.*Causal Inference in Statistics: A Primer*by Judea Pearl, Madelyn Glymour, Nicholas P. Jewell: A fairly accessible introduction to Judea Pearl’s work. I didn’t find it that practical, but I believe it helped me understand the graphical modelling parts of*Causal Inference*by Hernán and Robins.*Elements of Causal Inference: Foundations and Learning Algorithms*by Jonas Peters, Dominik Janzing, and Bernhard Schölkopf: The name of the book is an obvious reference to the classic book*The Elements of Statistical Learning*by Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unfortunately, the*Elements of Causal Inference*isn’t as widely applicable as Hastie et al.’s book – it contains some interesting ideas, but it appears that algorithms for causal learning from data with minimal assumptions aren’t yet scalable enough for practical use. This will probably change in the future.*Mostly Harmless Econometrics*by Joshua D. Angrist and Jörn-Steffen Pischke: I started reading this book on my Kindle and was put off by some formatting issues. It also seemed like a less-general version of Pearl’s work. I may get back to it one day.*Causality: Models, Reasoning, and Inference*by Judea Pearl: I haven’t read it, and I doubt it’d be very practical given the opinions of people who have. But maybe I’ll get to it one day.*The Book of Why: The New Science of Cause and Effect*by Judea Pearl and Dana Mackenzie: Looks like this book may be worth reading, though it seems like it may not be technical enough to apply to my work.

**Articles**:

*Does water kill? A call for less casual causal inferences*by Miguel Hernán: A great demonstration of why talking about causality requires well-defined interventions.*The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data*by Miguel Hernán: A high-level summary of causal inference and the need to be explicit about the causal goals of scientific studies.*The Environment and Disease: Association or Causation?*by Austin Bradford Hill: A classic discussion of the Bradford Hill criteria for causation. Highly recommended, as this 1965 paper also foresaw the problems with the statistical significance cult.*Causal inference in statistics: An overview*by Judea Pearl: A summary of Pearl’s work, which may be somewhat dated at this point (it’s from 2009). It’s still worth reading if you’re not ready to commit to reading his books.*Simpson’s Paradox: An Anatomy*by Judea Pearl: An explanation of Simpson’s paradox and its relationship to causal inference. This paper is worth reading, though I found that further reading is required to better understand why causal modelling “solves” the paradox.