This holiday season, give me real insights

Merriam-Webster defines an insight as an understanding of the true nature of something. Many companies seem to define an insight as any piece of data or information, which I would call a pseudo-insight. This post surveys some examples of pseudo-insights, and discusses how these can be built upon to provide real insights. Exhibit A: WordPress stats This website is hosted on wordpress.com. I’m generally happy with WordPress – though it’s not as exciting and shiny as newer competitors, it is rock-solid and very feature-rich....

December 8, 2015 · Yanir Seroussi

The hardest parts of data science

Contrary to common belief, the hardest part of data science isn’t building an accurate model or obtaining good, clean data. It is much harder to define feasible problems and come up with reasonable ways of measuring solutions. This post discusses some examples of these issues and how they can be addressed. The not-so-hard parts Before discussing the hardest parts of data science, it’s worth quickly addressing the two main contenders: model fitting and data collection/cleaning....

November 23, 2015 · Yanir Seroussi

Migrating a simple web application from MongoDB to Elasticsearch

Bandcamp Recommender (BCRecommender) is a web application that serves music recommendations from Bandcamp. I recently switched BCRecommender’s data store from MongoDB to Elasticsearch. This has made it possible to offer a richer search experience to users at a similar cost. This post describes the migration process and discusses some of the advantages and disadvantages of using Elasticsearch instead of MongoDB. Motivation: Why swap MongoDB for Elasticsearch? I’ve written a few posts in the past on BCRecommender’s design and implementation....

November 4, 2015 · Yanir Seroussi

Miscommunicating science: Simplistic models, nutritionism, and the art of storytelling

I recently finished reading the book In Defense of Food: An Eater’s Manifesto by Michael Pollan. The book criticises nutritionism – the idea that one should eat according to the sum of measured nutrients while ignoring the food that contains these nutrients. The key argument of the book is that since the knowledge derived using food science is still very limited, completely relying on the partial findings and tools provided by this science is likely to lead to health issues....

October 19, 2015 · Yanir Seroussi

The wonderful world of recommender systems

I recently gave a talk about recommender systems at the Data Science Sydney meetup (the slides are available here). This post roughly follows the outline of the talk, expanding on some of the key points in non-slide form (i.e., complete sentences and paragraphs!). The first few sections give a broad overview of the field and the common recommendation paradigms, while the final part is dedicated to debunking five common myths about recommender systems....

October 2, 2015 · Yanir Seroussi

You don’t need a data scientist (yet)

The hype around big data has caused many organisations to hire data scientists without giving much thought to what these data scientists are going to do and whether they’re actually needed. This is a source of frustration for all parties involved. This post discusses some questions you should ask yourself before deciding to hire your first data scientist. Q1: Do you know what data scientists do? Somewhat surprisingly, there are quite a few companies that hire data scientists without having a clear idea of what data scientists actually do....

August 24, 2015 · Yanir Seroussi

Goodbye, Parse.com

Over the past year, I’ve been using Parse‘s free backend-as-a-service and web hosting to serve BCRecommender (music recommendation service) and Price Dingo (now-closed shopping comparison engine). The main lesson: You get what you pay for. Despite some improvements, Parse remains very unreliable, and any time saved by using their APIs and SDKs tends to be offset by having to work around the restrictions of their sandboxed environment. This post details some of the issues I faced and the transition away from the service....

July 31, 2015 · Yanir Seroussi

Learning about deep learning through album cover classification

In the past month, I’ve spent some time on my album cover classification project. The goal of this project is for me to learn about deep learning by working on an actual problem. This post covers my progress so far, highlighting lessons that would be useful to others who are getting started with deep learning. Initial steps summary The following points were discussed in detail in the previous post on this project....

July 6, 2015 · Yanir Seroussi

Hopping on the deep learning bandwagon

I’ve been meaning to get into deep learning for the last few years. Now, the stars having finally aligned and I have the time and motivation to work on a small project that will hopefully improve my understanding of the field. This is the first in a series of posts that will document my progress on this project. As mentioned in a previous post on getting started as a data scientist, I believe that the best way of becoming proficient at solving data science problems is by getting your hands dirty....

June 6, 2015 · Yanir Seroussi

First steps in data science: author-aware sentiment analysis

People often ask me what’s the best way of becoming a data scientist. The way I got there was by first becoming a software engineer and then doing a PhD in what was essentially data science (before it became such a popular term). This post describes my first steps in the field with the goal of helping others who are interested in making the transition from pure software engineering to data science....

May 2, 2015 · Yanir Seroussi