Bootstrapping the right way?

Bootstrapping the right way is a talk I gave earlier this year at the YOW! Data conference in Sydney. You can now watch the video of the talk and have a look through the slides. The content of the talk is similar to a post I published on bootstrapping pitfalls, with some additional simulations. The main takeaways shared in the talk are: Don’t compare single-sample confidence intervals by eye Use enough resamples (15K?...

October 6, 2019 · Yanir Seroussi

Defining data science in 2018

I got my first data science job in 2012, the year Harvard Business Review announced data scientist to be the sexiest job of the 21st century. Two years later, I published a post on my then-favourite definition of data science, as the intersection between software engineering and statistics. Unfortunately, that definition became somewhat irrelevant as more and more people jumped on the data science bandwagon – possibly to the point of making data scientist useless as a job title....

July 22, 2018 · Yanir Seroussi

Customer lifetime value and the proliferation of misinformation on the internet

Suppose you work for a business that has paying customers. You want to know how much money your customers are likely to spend to inform decisions on customer acquisition and retention budgets. You’ve done a bit of research, and discovered that the figure you want to calculate is commonly called the customer lifetime value. You google the term, and end up on a page with ten results (and probably some ads)....

January 8, 2017 · Yanir Seroussi

If you don’t pay attention, data can drive you off a cliff

You’re a hotshot manager. You love your dashboards and you keep your finger on the beating pulse of the business. You take pride in using data to drive your decisions rather than shooting from the hip like one of those old-school 1950s bosses. This is the 21st century, and data is king. You even hired a sexy statistician or data scientist, though you don’t really understand what they do. Never mind, you can proudly tell all your friends that you are leading a modern data-driven team....

August 21, 2016 · Yanir Seroussi

Making Bayesian A/B testing more accessible

Much has been written in recent years on the pitfalls of using traditional hypothesis testing with online A/B tests. A key issue is that you’re likely to end up with many false positives if you repeatedly check your results and stop as soon as you reach statistical significance. One way of dealing with this issue is by following a Bayesian approach to deciding when the experiment should be stopped. While I find the Bayesian view of statistics much more intuitive than the frequentist view, it can be quite challenging to explain Bayesian concepts to laypeople....

June 19, 2016 · Yanir Seroussi

Why you should stop worrying about deep learning and deepen your understanding of causality instead

Everywhere you go these days, you hear about deep learning’s impressive advancements. New deep learning libraries, tools, and products get announced on a regular basis, making the average data scientist feel like they’re missing out if they don’t hop on the deep learning bandwagon. However, as Kamil Bartocha put it in his post The Inconvenient Truth About Data Science, 95% of tasks do not require deep learning. This is obviously a made up number, but it’s probably an accurate representation of the everyday reality of many data scientists....

February 14, 2016 · Yanir Seroussi

This holiday season, give me real insights

Merriam-Webster defines an insight as an understanding of the true nature of something. Many companies seem to define an insight as any piece of data or information, which I would call a pseudo-insight. This post surveys some examples of pseudo-insights, and discusses how these can be built upon to provide real insights. Exhibit A: WordPress stats This website is hosted on wordpress.com. I’m generally happy with WordPress – though it’s not as exciting and shiny as newer competitors, it is rock-solid and very feature-rich....

December 8, 2015 · Yanir Seroussi