Data moats, stealthy AI, and more: AI Con 2024 notes

Themes from AI Con 2024: data moats, stealthy AI use, Chatty’s UX revolution, and enduring fundamentals.

November 25, 2024

Don't build AI, build with AI

Building AI is hard and expensive. For most companies, the path to AI success is building with third-party AI interns and cheap AI cogs.

November 18, 2024

Juggling delivery, admin, and leads: Monthly biz recap

Highlights and lessons from my solo expertise biz, including value pricing, fractional cash flow, and distractions from admin & politics.

September 2, 2024

Giving up on the minimum viable data stack

Exploring why universal advice on startup data stacks is challenging, and the importance of context-specific decisions in data infrastructure.

August 19, 2024

First year lessons from a solo expertise biz in Data & AI

Reflections on building a solo expertise business in Data & AI, focusing on climate tech startups. Lessons learned from the first year of transition.

August 5, 2024

Your first Data-to-AI hire: Run a lovable process

Video and key points from the second part of a webinar on a startup’s first data hire, covering tips for defining the role and running the process.

July 22, 2024

Learn about Dataland to avoid expensive hiring mistakes

Video and key points from the first part of a webinar on a startup’s first data hire, covering data & AI definitions and high-level recommendations.

July 15, 2024

Exploring an AI product idea with the latest ChatGPT, Claude, and Gemini

Asking identical questions about my MagicGrantMaker idea yielded near-identical responses from the top chatbot models.

July 8, 2024

Stay alert! Security is everyone's responsibility

Questions to assess the security posture of a startup, focusing on basic hygiene and handling of sensitive data.

July 1, 2024

Five team-building mistakes, according to Patty McCord

Takeaways from an interview with Patty McCord on The Startup Podcast.

June 26, 2024

Is your tech stack ready for data-intensive applications?

Questions to assess the quality of tech stacks and lifecycles, with a focus on artificial intelligence, machine learning, and analytics.

June 24, 2024

AI ain't gonna save you from bad data

Since we’re far from a utopia where data issues are fully handled by AI, this post presents six questions humans can use to assess data projects.

June 17, 2024

Startup data health starts with healthy event tracking

Expanding on the startup health check question of tracking Kukuyeva’s five business aspects as wide events.

June 10, 2024

How to avoid startups with poor development processes

Questions that prospective data specialists and engineers should ask about development processes before accepting a startup role.

June 3, 2024

Plumbing, Decisions, and Automation: De-hyping Data & AI

Three essential questions to understand where an organisation stands when it comes to Data & AI (with zero hype).

May 27, 2024

Question startup culture before accepting a data-to-AI role

Eight questions that prospective data-to-AI employees should ask about a startup’s work and data culture.

May 20, 2024

Probing the People aspects of an early-stage startup

Ten questions that prospective employees should ask about a startup’s team, especially for data-centric roles.

May 13, 2024

Business questions to ask before taking a startup data role

Fourteen questions that prospective employees should ask about a startup’s business model and product, especially for data-focused roles.

May 6, 2024

Mentorship and the art of actionable advice

Reflections on what it takes to package expertise and deliver timely, actionable advice outside the context of employee relationships.

April 29, 2024

Assessing a startup's data-to-AI health

Reviewing the areas that should be assessed to determine a startup’s opportunities and challenges on the data/AI/ML front.

April 22, 2024

My experience as a Data Tech Lead with Work on Climate

The story of how I joined Work on Climate as a volunteer and became its data tech lead, with lessons applied to consulting & fractional work.

April 8, 2024

Two types of startup data problems

Classifying startups as ML-centric or non-ML is a helpful exercise to uncover the data challenges they’re likely to face.

March 4, 2024

Avoiding AI complexity: First, write no code

Two stories of getting AI functionality to production, which demonstrate the risks inherent in custom development versus starting with a no-code approach.

February 26, 2024

Building your startup's minimum viable data stack

First post in a series on building a minimum viable data stack for startups, introducing key definitions, components, and considerations.

February 19, 2024

Substance over titles: Your first data hire may be a data scientist

Advice for hiring a startup’s first data person: match skills to business needs, consider contractors, and get help from data people.

February 5, 2024